

- 1. Diagram (a) above shows a metal block supported by a spring balance. Diagram (b) shows the block partially immerses in water while diagram (c) shows the block fully immerses in water.
 - a. What is the mass of the metal block?
 - b. In diagram b), the reading of the balance became 14N.
 - i. What is the effective weight loss of the block when partially immense in water as shown in diagram (b)?
 - ii. What is the value of the upthrust that act on the block?
 - iii. Find the weight of the displaced water?
 - c. In diagram c), when the block is fully immerse in water, the reading of the spring balance became 10N.
 - i. Name 3 forces that acted on the block.
 - ii. State and explain the relationship between the forces in (c) (i)

Free Online Tuition

iii. Find the volume of the block. [Density of water = 1000 kg m⁻³]

- iv. Name the principle you used in the calculation in question (c) (iii).
- v. What will happen to the reading of the spring balance if the water is replaced with cooking oil.
- vi. Explain your answer in (c) (v)

[Answer: http://spmphysics.myhometuition.com/2013/06/archimedes-principle-structure-question.html]

- 2. Figure above shows a glass tube with cross-sectional area of 10 cm² and mass 10 g. It is filled with lead shots and immerse in water. The tube floats upright in the water. [Density of water is 10 g cm⁻³]
 - a. State the name of this device.

Free Online Tuition

Archimedes' Principle

- b. State one use of this device in a laboratory.
- c. Explain the function of the lead shots in the glass tube?
- d. The length of the glass tube immerse in water is 12 cm. Calculate
 - i. the volume of water displaced by the glass tube

OnlineTuition.com.my

- ii. the weight of the displaced water.
- e. The glass tube together with the lead shots are then placed inside a container that filled with cooking oil. Again, the tube floats upright.
 - i. What can be observed in the part of tube that is immerse in the oil when compared with the condition in figure above?
 - ii. Explain your answer in (b)(i).

OnlineTuition.com.my

[Answer: http://spmphysics.myhometuition.com/2013/06/archimedes-principle-structure-question_24.html]

- 3. A balloon filled with helium gas has negligible mass. The volume of the balloon is 120cm³. [Density of air = 1.23 kgm⁻³.Density of helium gas = 0.18 kgm⁻³]
 - a. i. Calculate the mass of the helium gas in the balloon?

[1 mark]

ii. Find the weight of the helium gas?

Archimedes' Principle

[1 mark]

- b. The balloon is then tied to a load of mass m kg, as shown in figure above. The balloon and the load float in the air stationary.
 - i. Mark in the diagram, all the forces that acted on the balloon.

[2 marks]

ii. Write an equation to relate all the forces in)b) (i).

[1 mark]

iii. Calculate the mass of the load, m.

c. If the string that is tied to the balloon is cut, Find upward acceleration experienced by the balloon?

[2 marks]

OnlineTuition.com.my

[Answer: http://spmphysics.myhometuition.com/2013/06/archimedes-principle-structure-question_1043.html]

Free Online Tuition