Understanding Pressure

	$ \rho = \frac{m}{V} $	
	ho = density m = mass V = volume	$(kg m^{-3})$ (kg) (m^{3})
Pressure $P = \frac{F}{A}$	P = Pressure A = Area of the surface F = Force acting normally to	$(Pa \text{ or } N \text{ m}^{-2})$ (m^{2}) the surface (N or kgms ⁻²)

Example 1

A force F is acting on a surface of area 20cm^2 , produces a pressure 2500Pa on the surface. Find the magnitude of the force.

Example 2

A block of wood 3 m long, 5 m wide and 1 m thick is placed on a table. If the density of the wood is 900 kgm⁻³, find a. the lowest pressure

b. the highest pressure

on the table due to the block.

[5N] [Step by step answer] [a. 9000 Pa; b. 45,000 Pa] [Step by step answer]

Free Online Learning Resources

More notes at http://www.onlinetuition.com.my

Example 3

Two cubes made of the same material; one has sides twice as the other, lying on a table. Standing on one face, the small cube exerts a pressure M on the table. What is the pressure (in term of M) exerted by the larger cube standing on one of its faces, on the table?

> [2M] [Step by step answer]

Free Online Learning Resources

More notes at http://www.onlinetuition.com.my