Simple Barometer

No air trapped in the tube

Pressure at $\mathrm{A}=\mathrm{x} \mathrm{cmHg}$
Atmospheric pressure $=\mathrm{h} \mathrm{cmHg}$

Some air trapped in the tube

Pressure at $\mathrm{A}=\mathrm{x} \mathrm{cmHg}+\mathrm{P}_{\text {gas }}$
Atmospheric pressure $=\mathrm{hcmHg}+\mathrm{P}_{\mathrm{gas}}$

Example 1

Find the pressure at point A, B, C, D, D, E and F in the unit of cmHg and Pa .
$\left(\right.$ Density of mercury $=13600 \mathrm{kgm}^{-3}$)

Simple Barometer

Example 2

Figure above shows a simple mercury barometer. What is the value of the atmospheric pressure shown by the barometer?
[103360Pa]
[Step by step solution]

Example 3

In figure above, the height of a mercury barometer is h when the atmospheric pressure is 101000 Pa. What is the pressure at X?
[Density of Mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$]

Example 4

Figure above shows a mercury barometer whereby the atmospheric pressure is 760 mm Hg on a particular day. Determine the pressure at point
a. A,
b. B,
c. C.
[Density of Mercury = $13600 \mathrm{~kg} / \mathrm{m}^{3}$]

Simple Barometer

Example 5

Figure above shows a simple barometer, with some air trapped in the tube. Given that the atmospheric pressure is equal to 101000 Pa , find the pressure of the trapped gas. [Density of Mercury = 13600 $\left.\mathrm{kg} / \mathrm{m}^{3}\right]$
a depth of 10 m from the water surface is 76 cmHg . [Density of Mercury = $13600 \mathrm{~kg} / \mathrm{m}^{3}$]

Example 7
 Exa

Figure(a) above shows the vertical height of mercury in a mercury barometer in a laboratory. Figure(b) shows the mercury barometer in water at a depth of shows the mercury barometer in water at a depth of
2.0 m . Find the vertical height (h) of the mercury in the barometer in the water. Given that the pressure at
[26,200Pa]
[Step by step solution]

Example 6

If the atmospheric pressure in a housing area is 100000 Pa , what is the magnitude of the force exerted by the atmospheric gas on a flat horizontal roof of dimensions $5 \mathrm{~m} \times 4 \mathrm{~m}$?

