Simple Barometer

Example 1

Find the pressure at point A, B, C, D, D, E and F in the unit of cmHg and Pa. (Density of mercury = 13600kgm⁻³)

A	Pressure in unit cmHg	Pressure in unit Pa
17cm	P _A =	P _A =
B • F	P _B =	P _B =
59cm	P _C =	P _C =
	P _D =	P _D =
● ● 8cm	P _E =	P _E =
	P _F =	P _F =

Free Online Tuition

Simple Barometer

OnlineTuition.com.my

Example 2

Figure above shows a simple mercury barometer. What is the value of the atmospheric pressure shown by the barometer?

Example 4

Figure above shows a mercury barometer whereby the atmospheric pressure is 760 mm Hg on a particular day. Determine the pressure at point

- a. A,
- b. B,
- c. C.

[103360Pa]

[Step by step solution]

[Density of Mercury = 13 600 kg/m³]

In figure above, the height of a mercury barometer is h when the atmospheric pressure is 101 000 Pa. What is the pressure at X? [Density of Mercury = 13 600 kg/m³]

> [75,750Pa] [Step by step solution]

[a. 0; b. 50cmHg/68,000Pa; c. 76cmHg/103360Pa] [Step by step solution]

Simple Barometer

Example 5

Figure above shows a simple barometer, with some air trapped in the tube. Given that the atmospheric pressure is equal to 101000 Pa, find the pressure of the trapped gas. [Density of Mercury = 13600 kg/m^3]

Example 7

OnlineTuition.com.my

Figure(a) above shows the vertical height of mercury in a mercury barometer in a laboratory. Figure(b) shows the mercury barometer in water at a depth of 2.0 m. Find the vertical height (h) of the mercury in the barometer in the water. Given that the pressure at a depth of 10 m from the water surface is 76 cmHg. [Density of Mercury = 13 600 kg/m³]

[26,200Pa] [Step by step solution]

Example 6

If the atmospheric pressure in a housing area is 100 000 Pa, what is the magnitude of the force exerted by the atmospheric gas on a flat horizontal roof of dimensions $5m \times 4m$?

[2,000,000N] [Step by step solution] [90cm] [Step by step solution]

