## Pascal's Principle



$$
\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

$F_{1}=$ Force exerted on the small piston
$A_{1}=$ area of the small piston
$F_{2}=$ Force exerted on the big piston
$A_{2}=$ area of the big piston

## Example 1

In a hydraulic system the large piston has a crosssectional area $\mathrm{A}_{2}=200 \mathrm{~cm}^{2}$ and the small piston has cross-sectional area $A_{1}=5 \mathrm{~cm}^{2}$. If a force of 250 N is applied to the small piston, what is
a. the pressure exerted on the small piston
b. the force F , produced on the large piston?

## Example 2

A hydraulic lift is to be used to lift a truck masses 5000 kg . If the diameter of the small piston and large piston of the lift is 5 cm and 1 m respectively,
a. what gauge pressure in Pa must be applied to the oil?
b. What is the magnitude of the force required on the small piston to lift the truck?
[a. $50 \mathrm{~N} / \mathrm{cm}^{2}$; b. $10,000 \mathrm{~N}$ ]
[Step by step solution]

## Pascal's Principle

## Change of Oil Level in a Hydraulic System



In the diagram above, when piston- X is pressed down, piston- Y will be pushed up. The change of the piston levels of the 2 pistons is given by the following equation:

$$
h_{1} A_{1}=h_{2} A_{2}
$$

## Example 3



Figure to the left shows a hydraulic system. The area of surface X is $5 \mathrm{~cm}^{2}$ and the area of surface Y is $100 \mathrm{~cm}^{2}$. Piston X has been pushed down 10 cm . what is the change of liquid level, h , at Piston Y?

