Manometer

Manometer

$$P = P_{atm} + h\rho g$$

 $P_{gas} = Pressure$ (Pa or N m⁻²)

 $P_{atm} = Atmospheric Pressure$ (Pa or N m⁻²)

 $h\rho g = pressure of the mercury column$ (Pa or N m⁻²)

- 1. There are a few points we need to know when using a manometer
 - a. Difference in gas pressure at difference level can be ignored.
 - b. Pressure on the surface of liquid is equal to the gas pressure in contact.
 - c. Pressure that cause by liquid = $h\rho g$.
 - d. For a given liquid, the pressures at any point of the same level are the same.
 - e. For different liquid with different density, pressure at two at same level will be different.

Example 1

Figure above shows a manometer containing mercury connected to a tank with methane liquid and gas. Find the pressure of the gas supply in the units cmHg and Pa.

[Density of mercury = $13.6 \times 10^3 \text{ kg m}^{-3}$; atmospheric pressure = 76 cmHg]

Example 2

Figure above shows the mercury levels in a manometer used to measure the pressure of a gas supply. How much is the gas pressure greater than the atmospheric?

[96 cmHg; 130,560Pa] [Step by step solution]

[5 cmHg] [Step by step solution]