Manometer

Manometer

$$
P=P_{a t m}+h \rho g
$$

$$
P_{\text {gas }}=\text { Pressure } \quad\left(\text { Pa or } N^{-2}\right)
$$

$P_{\text {atm }}=$ Atmospheric Pressure
(Pa or Nm^{-2})
$h \rho g=$ pressure of the mercury column $\quad\left(\right.$ Pa or $\left.N^{-2}\right)$

1. There are a few points we need to know when using a manometer
a. Difference in gas pressure at difference level can be ignored.
b. Pressure on the surface of liquid is equal to the gas pressure in contact.
c. Pressure that cause by liquid $=h \rho g$.
d. For a given liquid, the pressures at any point of the same level are the same.
e. For different liquid with different density, pressure at two at same level will be different.

Example 1

Figure above shows a manometer containing mercury connected to a tank with methane liquid and gas. Find the pressure of the gas supply in the units cmHg and Pa .
[Density of mercury $=13.6 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$; atmospheric pressure $=76 \mathrm{cmHg}$]

Example 2

Figure above shows the mercury levels in a manometer used to measure the pressure of a gas supply. How much is the gas pressure greater than the atmospheric?

