

Archimedes Principle states that when a body is wholly or partially immersed in a fluid it experiences an upthrust equal to the weight of the fluid displaced.

Upthrust, $F = \rho_2 V_2 g$

Weight of the object, $W = \rho_1 V_1 g$

 ρ_1 = density of wooden block V_1 = volume of the wooden block ρ_2 = density of water V_2 = volume of the displaced water g = gravitational field strength

The principle of floatation states that when an object floats in a liquid the buoyant force/upthrust that acts on the object is equal to the weight of the object.

Example 1

Example 2

Determine the upthrust acted on the objects immerse in the water below.

Free Online Tuition

[Step by step solution]

An iron block which has volume $0.3m^3$ is immersed in water. Find the upthrust exerted on the block by the water. [Density of water = 1000 kg/m³]

Figure above shows an empty boat floating at rest on water. Given that the mass of the boat is 150kg. Find

- a. the upthrust acting on the boat.
- b. The mass of the water displaced by the boat.
- c. The maximum mass that the boat can load safely if the volume of the boat at the safety level is 3.0 m^3 .

[a. 1500N; b. 150kg; c. 2850kg] [Step by step solution]

Buoyant Force and Weight of Object

Table below compare the formulae used to calculate the weight of an object immersed in water to the upthrust.

Weight of object	Upthrust/Buoyant Force
$W = \rho V g$	$F = \rho V g$
W = weight of object	F = Upthrust (Weight of displaced water)
g = gravitational field strength (10N/kg)	g = gravitational field strength (10N/kg)
ρ = density of the object	ρ = density of the displaced fluid
V = volume of the object	V = volume of the displaced fluid
	(volume of displaced fluid = volume of the object
	that immerse in the fluid.)

Free Online Tuition

Example 4

In figure above, if the height of the cylinder is 20cm, the density of the cylinder is 1200kg/m^3 and the density of the liquid is 1000 kg/m^3 , find: a. The weight of the cylinder

b. The buoyant force acted on the cyclinder

Example 6

[8N]

[Step by step solution]

A metal block that has volume of 0.2 m³ is hanging in a water tank as shown in the figure above. What is the tension of the string? [Density of the metal = 8×10^3 kg m⁻³, density of water = 1×10^3 kg m⁻³]

[a. 12N; b. 6N] [Step by step solution]

Example 5

The density and mass of a metal block are 5.0×10^3 kg m⁻³ and 4.0kg respectively. Find the upthrust that act on the metal block when it is fully immerse in water.

[Density of water = 1000 kgm^{-3}]

Free Online Tuition

[14,000N] [Step by step solution]

Example 7

A wooden sphere of density 0.9 g/cm^3 and mass 180 g, is anchored by a string to a lead weight at the bottom of a vessel containing water. If the wooden sphere is completely immersed in water, find the tension in the string.

Example 8

Figure to the left shows a copper block rest on the bottom of a vessel filled with water. Given that the volume of the block is 1000cm3. Find the normal reaction acted on the block. [Density of water = 1000 kg/m_3 ; Density of copper = 3100 kg/m^3]

> [21N] [Step by step solution]

[0.4N] [Step by step solution]

Free Online Tuition