Movement with Uniform Acceleration

1. Symbols that use in the equations of linear motion are as below:

Equation of linear motion

$u=$ initial velocity
$v=$ final velocity
$a=$ acceleration
$s=$ displacement
$t=$ time
$v=u+a t$
$s=\frac{1}{2}(u+v) t$
$s=u t+\frac{1}{2} a t^{2}$

Example 4

A car is accelerated at $4 \mathrm{~ms}^{-2}$ from an initial velocity of 5 ms^{-1} for 10 seconds. What is the distance traveled by the car?

Example 5

A car accelerates from $4 \mathrm{~ms}^{-1}$ reaches a velocity of $28 \mathrm{~ms}^{-1}$ after traveling for 64 m . What is the deceleration of the car?

Example 6

A car begins to move from rest. The velocity of the car increases at a rate of $4 \mathrm{~ms}^{-2}$. Find the distance traveled by the car after 12 second.

Movement with Uniform Acceleration

Example 7

A body is accelerated uniformly from rest and in the first 6.0 s of its motion it travels 30 m . Find
(i) the average speed for this period of 8 s ,
(ii) the speed at the end of this period,
(iii) the acceleration.
2. Zulkifli starts driving his car from home with a constant acceleration and reaches a velocity of $30 \mathrm{~m} / \mathrm{s}$ in 6.0 seconds. Find
a. the acceleration of Zulkifli's car.
b. the displacement of Zulkifli's car 5.0 seconds after it started moving.
c. the displacement of Zulkifli's car at he fifth second..
d. velocity of Zulkifli's car at time $t=4.0$ seconds?
e. velocity of Zulkifli's car after moving 30.0 meters from the starting point.

Solution:

Challenging Question

1. A car starts from rest and accelerates at a constant acceleration of $3 \mathrm{~m} \mathrm{~s}^{-2}$ for 10 seconds. The car then travels at a constant velocity for 5 seconds. The brakes are then applied and the car stops in 5 seconds. What is the total distance traveled by the car?
